
Chapter 5: Elastic Load Balancing, Amazon CloudWatch, & Auto Scaling

One of the biggest selling points for cloud computing is automatic scalability of infrastructure

This chapter covers the technologies that make this possible at AWS

What do we need to implement an automatically scaling infrastructure?

 A mechanism to distribute load across multiple EC2 instances

 A mechanism to monitor utilization, so that we know WHEN more capacity is needed, or when

excess capacity can be released

 A mechanism to start/stop EC2 instances

Amazon’s solution for each of these is:

 Distribute load: AWS Elastic Load Balancing (ELB)

 Monitor utilization: AWS CloudWatch

 Start/stop instances: AWS Auto Scaling

Elastic Load Balancing

What Is It?

Mechanism that distributes network traffic across multiple server/EC2 instances

Two ways to implement load balancing at AWS:

 Using a custom AMI (bad!)

 Using Amazon's Elastic Load Balancer (ELB) service (good!)

ELB is a highly available (within a single region), AWS-managed load balancer service

ELB balances load across EC2 instances in Availability Zones (AZs) within a single region; it cannot load-

balance across regions (can use AWS Route 53 to route users to closest region and load balance within)

ELBs are created and managed thru the EC2 menu in the AWS console

ELB Types and Listeners

Three types of ELB load balancers: Internet-facing, internal, and HTTPS

 Internet-facing – ELB is accessible from the Internet, used to balance load across web servers

 Internal – ELB is within VPC, balances incoming requests across application or data servers

 HTTPS – ELB supports SSL encryption (contains cert, acts as endpoint/terminator for SSL)

AWS generates and assigns each ELB a DNS name to address it

 The ELB’s IP address is managed by AWS and can change over time

 You can’t assign an Elastic IP address to an ELB

 Customers can create other DNS names (CNAME recs) to alias the AWS-generated name

A listener tells the ELB what protocol(s) and port(s) to listen for requests, on the front and back end

 ELB supports these protocols: HTTP, HTTPS, TCP and SSL

 ELBs within a VPC support IPv4 only; ELBs in EC2-Classic support IPv4 and IPv6 (aka "dualstack")

 SSL requires installation of certificate on the ELB

 Cert must include Subject Alternative Name (SAN) for each domain if hosting multiple domains

(e.g. sales.coke.com, marketing.coke.com, finance.coke.com; or wildcards, like *.coke.com)

ELB Configuration Settings

Idle Connection Timeout

 ELB maintains two network connections per request: client to ELB, and ELB to back end

 Idle Connection Timeout = how long the ELB will keep an idle connection open before closing

 Default is 60 seconds, for both front and back end connections

 Enable keep-alive on EC2 web servers for better performance (reuses connections)

 Set keep-alive timeout on web servers higher than Idle Connection Timeout

Cross-zone Load Balancing

 Ensures requests are balanced across Availability Zones (AZs)

 Helps overcome issue where clients cache DNS lookups and skew toward one AZ

Connection Draining

 Allows unhealthy or deregistering instance a period of time to complete in-flight requests

 Keeps existing connections open

 Stops sending new requests to the instance

 Timeout value can be 1-3600 seconds

 Default is 300 seconds (5 minutes)

Proxy Protocol

 Allows ELB to inform the back end that a load balancer proxied the incoming request

 Inserts an HTTP header containing source/destination IP and ports

 Multiple ELBs with Proxy Protocol enabled will insert multiple headers

Sticky Sessions

 By default, load balancer routes each request to EC2 instance with lightest load

 Sticky sessions (aka Session Affinity) routes a client’s requests to the same instance

 ELB can use session cookie provided by the app to make session sticky

 Alternatively, ELB can insert an AWSELB cookie to do same

Health Checks

 Tests status of the EC2 instances behind the load balancer

 Status can be either: InService or OutOfService

 Three types of health checks: ping, connection attempt, web page

 Configure: health check type, test interval, # attempts before flagging healthy/unhealthy

Amazon CloudWatch

What Is It?

A highly available (within a region), AWS-managed service to monitor AWS resources in real-time

 Collects metrics from AWS resources (EC2 instances, ELBs, RDS instances, etc.)

 Uses alarms to send notifications when a metric meets the criteria

o For example, CPU utilization > 70%, free disk space < 10%, etc.

 Each alarm watches a single metric and sends a notification when the metric breaches a

specified threshold

Two types of monitoring:

 Basic (default): Free, limited number of metrics, collects data every five minutes

 Detailed: $, larger choices of metrics, collects data every minute, can aggregate over time

Apps can add/inject custom metrics into CloudWatch via an API

 OS-specific metrics that aren’t visible to CloudWatch

 Metrics generated by the application itself

Limit of 5000 alarm definitions per account

AWS CloudWatch Logs collects log files from AWS infrastructure

Metrics data is kept for two weeks; move to S3 or Glacier for longer-term storage

Can install a CloudWatch Logs agent on Linux servers to push OS or app logs to CloudWatch

Auto Scaling

What Is It?

A highly available service (within a region) that scales your Amazon EC2 capacity automatically, using

criteria that you define

Auto Scaling Plans

 Maintain Current Instance Levels – Ensure fixed number of instances are always available

 Manual Scaling – Administrator scales by changing max/min capacity settings

 Scheduled Scaling – Scale on specific dates and/or times

 Dynamic Scaling – Scale based on parameters you specify

Auto Scaling Components

 Launch Configuration – Template that determines what kind of EC2 instances to create

 Auto Scaling Group – Collection of instances managed by Auto Scaling

 Scaling Policy (optional) – Specifies how quickly/aggressively to scale out/in

Launch Configuration

 Template that Auto Scaling uses to create new EC2 instances

 Contains:

o Configuration Name – Name you use to refer to the configuration

o AMI Name – Name of the image to use to create the EC2 instance

o EC2 Instance Type - Virtual Machine resource config (memory, CPU, storage, network)

o Security Group – Stateful firewall for the EC2 instances

o Instance Key Pair – Encryption key pair for connection and authentication

o Max Bid Price – Maximum bid price, if using Spot instances

 Can use On Demand or Spot instances only; can’t mix within a single launch configuration

 Limited to 100 launch configurations per account, per region

 Consider using a preconfigured AMI versus post-launch config (faster to spin up)

 Can use a new launch configuration to roll out patches/updates to AMIs

o Auto Scaling will gradually terminate old instances and replace with new ones

Auto Scaling Group

 Collection of EC2 instances managed by the Auto Scaling service

 Contains:

o Name – Name of the Auto Scaling Group

o Minimum number of instances – Lower limit

o Maximum number of instances – Upper limit

o Desired number of instances (optional) – Defaults to minimum

Scaling Policy

 A set of instructions that tells Auto Scaling whether to scale out/in, and how

 Ways to Configure Scaling Policy

o Increase/decrease by a specific # of instances or by a percentage

o Increase/decrease based on the size of the alarm threshold trigger

 Can associate more than one Scaling Policy with an Auto Scaling Group

o To scale based on CPU utilization OR memory usage, for instance

 Best practice is to scale out quickly, and scale in slowly

